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Sequential fate-switches in stem-like cells drive the tumorigenic
trajectory from human neural stem cells to malignant glioma
Xiaofei Wang1, Ran Zhou2, Yanzhen Xiong1,3, Lingling Zhou1, Xiang Yan1, Manli Wang4, Fan Li1, Chuanxing Xie1, Yiming Zhang2,
Zongyao Huang1, Chaoqiong Ding1, Kaidou Shi4, Weida Li5, Yu Liu 4, Zhongwei Cao2, Zhen-Ning Zhang5, Shengtao Zhou2,
Chong Chen 4, Yan Zhang 3, Lu Chen 2 and Yuan Wang 1

Glioblastoma (GBM) is an incurable and highly heterogeneous brain tumor, originating from human neural stem/progenitor cells
(hNSCs/hNPCs) years ahead of diagnosis. Despite extensive efforts to characterize hNSCs and end-stage GBM at bulk and single-cell
levels, the de novo gliomagenic path from hNSCs is largely unknown due to technical difficulties in early-stage sampling and
preclinical modeling. Here, we established two highly penetrant hNSC-derived malignant glioma models, which resemble the
histopathology and transcriptional heterogeneity of human GBM. Integrating time-series analyses of whole-exome sequencing,
bulk and single-cell RNA-seq, we reconstructed gliomagenic trajectories, and identified a persistent NSC-like population at all stages
of tumorigenesis. Through trajectory analyses and lineage tracing, we showed that tumor progression is primarily driven by multi-
step transcriptional reprogramming and fate-switches in the NSC-like cells, which sequentially generate malignant heterogeneity
and induce tumor phenotype transitions. We further uncovered stage-specific oncogenic cascades, and among the candidate
genes we functionally validated C1QL1 as a new glioma-promoting factor. Importantly, the neurogenic-to-gliogenic switch in NSC-
like cells marks an early stage characterized by a burst of oncogenic alterations, during which transient AP-1 inhibition is sufficient
to inhibit gliomagenesis. Together, our results reveal previously undercharacterized molecular dynamics and fate choices driving de
novo gliomagenesis from hNSCs, and provide a blueprint for potential early-stage treatment/diagnosis for GBM.
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INTRODUCTION
Glioblastoma (GBM, World Health Organization WHO Grade IV) is
the most common and aggressive primary brain cancer with a
median survival of 15 months.1,2 GBM is among the best
molecularly characterized cancer types, leading to recognition of
its extreme inter- and intra-tumor heterogeneity. Bulk GBMs can
be classified into at least three molecular subtypes, namely
Proneural, Classical and Mesenchymal.3,4 Recent single-cell ana-
lyses further determined that GBMs exist in diverse cellular states,
and contain heterogeneous stem-like subpopulations.5–8 Despite
these efforts, the prognosis of GBM remains unimproved in the
past decade.
One reason for the poor prognosis of GBM may be delayed

diagnosis and treatment. Over 90% of GBMs are primary GBMs,
which are full-blown tumors at diagnosis without clinical proof of
pre-existing lower-grade lesions. However, genetic evidence
postulates that they may arise from an undetectable cell of origin
several years before initial diagnosis.9 The most likely cell(s) of
origin for GBM are neural stem/progenitor cells (NSCs/NPCs) in the
subventricular zone (SVZ) and oligodendrocyte precursor cells
(OPCs), as demonstrated by studies on genetically engineered
mouse models (GEMMs).10–14 In support of the NSC-origin

hypothesis, a recent study showed that non-tumor-associated
human SVZ contains low-level driver mutations shared with
matched GBM in distant brain regions, indicating an NSC-to-GBM
evolution.15 However, the de novo tumorigenic path from human
NSCs (hNSCs) towards heterogeneous GBM cells during the long
period of tumor latency remains largely unknown, and it is yet to
be determined whether there is a window of opportunity for early-
stage diagnosis and preventative treatment of GBM.
Since de novo gliomagenesis is a process that precedes the

development of full-blown tumors, it cannot be investigated in
well-established pre-clinical models generated from end-stage
tumors, such as tumor cell lines, tumorspheres, or patient-derived
xenograft models including glioma stem cell (GSC) xenograft
models. It is also technically challenging to collect early-stage
patient samples. Recent advances in human stem cell biology and
genome-editing techniques provide new tools to address this
question,16 allowing for direct glioma modeling from human stem
cells by introducing defined initiating mutations.17,18 A recent
study established glioma models from human induced pluripotent
stem cells, performed longitudinal analysis on primary tumor-
spheres, secondary tumors, and secondary tumorspheres, and
revealed how tumor cells evolve between in vivo and in vitro
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passages.17 However, the de novo gliomagenic trajectory from
hNSCs is yet to be determined in highly penetrant hNSC-derived
glioma models.
In this study, we established two orthotopic malignant glioma

models from genome-edited hNSCs with 94%–100% penetrance,
which resemble histopathological features and transcriptional
heterogeneity of human GBM at bulk and single-cell levels.
Integrating multi-omic time-series analyses of deep whole exome
sequencing (WES), bulk and single-cell RNA-seq (scRNA-seq), we
reconstructed de novo tumorigenic trajectories from hNSCs. We
show that tumor progression is primarily driven by multi-step
transcriptional reprogramming in a persistent NSC-like population,
while additional genetic alterations do not appear to play a
dominant role. NSC-like cells exhibit stage-specific fate-switches
and transcriptional alterations to generate malignant heteroge-
neity, leading to tumor phenotype transitions. Among top
upregulated oncogenic candidates, we functionally validated
C1QL1 as a new glioma-promoting factor. We further determined
that the neurogenic-to-gliogenic switch in NSC-like cells marks an
important early stage with a burst of oncogenic alterations
including the upregulation of AP-1. Transient AP-1 inhibition at
this stage was sufficient to impede gliomagenesis in vivo,
providing a proof of concept for potential early-stage interven-
tions against the gliomagenic trajectory.

RESULTS
Genome-edited hNSCs with GBM-relevant tumor suppressor
mutations generate malignant gliomas with high penetrance
To directly target GBM-relevant tumor suppressor mutations into
hNSCs, we generated iCas9 hNSCs from Hues8-iCas9 human
pluripotent stem cells (hPSCs), which contain doxycycline (dox)-
inducible Cas9 transgene allowing for highly efficient one-step
editing of multiple genes.19 We designed two combinations of
gRNAs targeting TP53, NF1, or PTEN (Fig. 1a; Supplementary
information, Fig. S1a, and Materials and Methods), which are
among the top five mutated genes in GBM.20 gRNAs targeting
TP53/NF1/PTEN (TNP) or TP53/NF1 (TN) were introduced into iCas9
hNSCs in a lentiviral vector V2TC, which carries mCherry as a
lineage tracing reporter. hNSCs transfected with an empty vector
were used as controls (hereafter, Vector).
To avoid extended in vitro culture of genome-edited hNSCs

which might accumulate undesired genetic/epigenetic alterations,
we chose not to perform standard single-cell colony selection but
relied on puromycin selection for viral transfected cells (Fig. 1a,
Materials and Methods). Nevertheless, the mutation frequency of
TP53, NF1, and PTEN in resultant hNSCs was over 93%, evidenced
by western blot or endonuclease T7 assays (Supplementary
information, Fig. S1b, c). Of note, while the protein levels of
TP53 in TN and TNP hNSCs were only slightly reduced, the
insertion/deletion (Indel) ratio at genome-edited loci was over
97%, suggesting that our targeting strategy may result in the
expression of mutant TP53 proteins. In support of the high
mutation frequency, TN and TNP hNSCs were consistently more
clonogenic than Vector controls in colony formation assays
(Supplementary information, Fig. S1d). The neural stem/progenitor
cell identities of Vector, TN, and TNP hNSCs were confirmed by
their robust expression of SOX2, PAX6, and human-specific NESTIN
(hNES) (Supplementary information, Fig. S1e). Thus, we efficiently
generated mutant hNSCs harboring multiple GBM-relevant tumor
suppressor mutations.
To test whether genome-edited hNSCs can generate brain

tumors in vivo, we orthotopically transplanted Vector, TN, and TNP
hNSCs into the brains of immunodeficient NOD/SCID mice. None
of the Vector mice developed brain tumors (0/16). In contrast, TN
and TNP mice exhibited neurological symptoms requiring sacrifice
between 2.5 and 8 months post transplantation. 100% of TN (15/
15) and TNP (14/14) mice developed brain tumors, with

statistically different median brain-tumor-free survival of 187 and
141 days, respectively (Fig. 1b, c). TNP but not TN tumors were
consistently visible at the macroscopic level (Fig. 1d). Based on
WHO criteria, 94% of TN (14/15) and 100% of TNP tumors (14/14)
exhibited classical features of high-grade gliomas (HGGs) includ-
ing anaplastic astrocytomas and GBMs, such as diffuse infiltrative
growth, high degrees of nuclear atypia, mitosis, microvascular
proliferation, and secondary structures of Scherer (Fig. 1c–f;
Supplementary information, Fig. S1f). These tumors expressed
high levels of glioma markers GFAP, hNES, Ki67, and pERK (Fig. 1e,
f). OLIG2, a transcription factor (TF) and master regulator of glial
fate and gliomagenesis,21–23 was also highly expressed (Fig. 1f). In
contrast, the progeny of transplanted Vector hNSCs did not
expand in the brains of age-matched mice, and barely expressed
hNES, Ki67, OLIG2, or pERK (Fig. 1e, f). The majority of the cells
expressed astrocyte marker GFAP, indicating astrocytic differentia-
tion (Fig. 1e).
Another hallmark feature of GBM is its high invasiveness. TN and

TNP HGGs all exhibited extensive neoplastic infiltration, invading
brain regions both ipsilateral and contralateral to the transplanta-
tion site (Fig. 1d). While TN tumors still retained a central focal
tumor area around the transplantation site, TNP tumors diffusely
infiltrated the entire anterior forebrain with minimal or no central
focal area, reminiscent of some extreme cases of human GBM
(Fig. 1d). In both TN and TNP mice, mCherry+hNES+ cells with
elongated nuclei were readily identified around the blood vessels
and along the white matter tract, the most common invasion
routes of GBM24 (Figs. 1e, 2a, b). Importantly, TN and TNP tumors,
but not Vector hNSCs, frequently invaded bilateral SVZs of the host
mice, a phenomenon associated with increased recurrence and
decreased survival in patients with GBM (Fig. 2a, b; Supplementary
information, Fig. S2a, b).25,26 A significant portion of invading cells
in the white matter and the SVZ expressed OLIG2 and Ki67
(Fig. 2c–e). In addition, transdifferentiated mCherry+αSMA+

pericytes and mCherry+hCD31+ endothelial cells were observed
at the invasive fronts (Supplementary information, Fig. S2c, d). This
is consistent with previous publications that human GBM cells can
generate pericytes and/or endothelial cells to promote
neovascularization.27,28 Together, these results demonstrate that
genome-edited hNSCs with GBM-relevant tumor suppressor
mutations generate malignant gliomas with high penetrance,
which resemble pathological features of human GBM.

TN and TNP tumors resemble inter- and intra-tumor heterogeneity
of GBM
To investigate whether TN and TNP tumors transcriptionally mimic
human GBM, we performed bulk RNA-seq in 6 TN and 11 TNP
HGGs, and compared them to the RNA-seq from TCGA using
GEPIA2.29 Both TN and TNP tumors were classified as GBM/Low-
grade glioma (LGG) among 20 cancer types in the TCGA database
(Supplementary information, Fig. S2e). To further determine their
molecular subtypes, we used a published single sample gene set
enrichment analysis (ssGSEA)-based strategy.4 Both TN and TNP
tumors exhibited significant inter-tumor heterogeneity, represent-
ing all three TCGA subtypes (Fig. 2f; Supplementary information,
Fig. S2f). To determine whether these tumors also exhibit intra-
tumor heterogeneity, we performed paired scRNA-seq on two TNP
tumors (#4 and #6) and their tumor-associated SVZs. Consistent
with previous reports,4,8 individual TNP tumor cells expressed
distinct subtype signatures, and the dominant subtype of single
cells was the same as the bulk subtype (Fig. 2f). Notably, the
majority of single cells from #4 SVZ were Classical, which is different
from the paired Proneural non-SVZ tumor at bulk or single-cell
level, highlighting the regional differences within the same tumor
(Fig. 2f). In sum, these data indicate that genome-edited hNSCs
with defined initiating mutations can give rise to malignant gliomas
with inter- and intra-tumor heterogeneity, transcriptionally resem-
bling human GBM at bulk and single-cell levels.
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Fig. 1 TN and TNP hNSCs generate HGGs in vivo with high penetrance. aWorkflow to generate HGGs from iCas9 hNSCs. b The brain-tumor-
free survival curves of Vector, TN, and TNP mice. n, the number of animals. P value, Log-rank (Mantel-cox) test. c The percentage of mice
diagnosed with no tumor, LGG, and HGG in control and mutant groups. d Left: whole-mount view of end-stage Vector, TN, and TNP brains.
Red dashed lines, an overt tumor in the TNP brain. Right: low magnification view of the progeny of transplanted cells marked by mCherry/
DAPI in coronal brain sections at the end stage. Arrow, mCherry+ cells in the Vector brain. White dashed lines, the central focal tumor area
with high cellularity in the TN brain. e, f Immunofluorescence (IF) co-labeling of mCherry with GFAP, hNES, Ki67, OLIG2, and pERK on serial
brain sections from end-stage Vector, TN, and TNP mice. DAPI, nuclei. Insets, mCherry+GFAP+ tumor cells surrounding the neuronal nuclei.
Arrows, co-labeled cells. Arrowheads, OLIG2+mCherry– cells. V, blood vessel. Scale bars, 1 mm (d); 50 μm (e, f).
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A stage of “oncogenic burst” distinguishes de novo tumorigenesis
from normal differentiation
To delineate gliomagenic trajectories from mutant hNSCs to
malignant gliomas in vivo, we first designated four stages during
tumorigenesis and paralleled normal differentiation. In addition to

the starting hNSCs, end-stage tumor and tumor-infiltrated SVZ
samples (defined as stages T0, End, and EndSVZ, respectively), we
further collected tissue from mice sacrificed one or two months
post transplantation as early-stage samples (defined as stages T1
and T2, respectively), given that TN and TNP mice succumb to

Fig. 2 TN and TNP tumors histologically and transcriptionally resemble human GBM. a, b IF for mCherry/hNES in the WM and SVZ ipsilateral
(IL) and contralateral (CL) to the transplantation sites in end-stage TN (a) and TNP (b) brains. c–e IF for mCherry/OLIG2 (c, d) and mCherry/Ki67
(e) in the WM and SVZ of end-stage TN and TNP brains. Arrows, co-labeled cells. LV, lateral ventricle. ST, striatum. WM, white matter. Scale bars,
50 μm. f Top: Heatmap of the P values (–log10) of GBM subtypes for bulk TNP samples at the end stage based on ssGSEA analysis. Bottom:
Heatmap of the meta-subtype score for each single cell in TNP End and EndSVZ samples. Lines link samples from the same mouse.

Article

687

Cell Research (2021) 31:684 – 702



brain tumors as early as three months post transplantation. We
then performed time-series bulk RNA-seq, scRNA-seq, and WES
analyses in TNP, TN, Vector and wildtype hNSC samples at
comparable stages (Fig. 3a).
To identify the divergent stage(s) between tumorigenesis and

normal differentiation trajectories, we first compared the RNA-seq
data from bulk and single-cell pseudo-bulk TNP samples to the
controls. We used principle component analysis (PCA) and
revealed that TNP and Vector samples were consistently separated
by four different stages along the PC1 axis (Fig. 3b). While TNP
samples cluster together with controls at T0 and T1, they started
to diverge from controls at T2, and the difference became more
evident at End/EndSVZ. This pattern was further confirmed by TNP
pseudo-bulk samples compiled from scRNA-seq, which followed a
similar trajectory (Fig. 3b).
To further assess the validity of the T2 as a divergent point and

identify its enriched regulatory programs, we performed differ-
ential gene expression analysis on TNP and Vector samples at
in vivo stages T1, T2, and End. Consistent with our PCA results, we
identified 4.8 times and 3.6 times more upregulated and
downregulated genes at T2 than T1, respectively (Fig. 3c;
Supplementary information, Table S1). Differentially expressed
genes (DEGs) at T2 were enriched for molecular functions and
biological processes consistent with the functional differences
between tumorigenesis and normal differentiation (Supplemen-
tary information, Table S2). 38 upregulated genes at this stage
were enriched for malignant glioma (adjusted P value = 0.0001),
including OLIG2, EGFR, ASCL1, PTPRZ1, and CCND1 (Fig. 3d).
Furthermore, many cancer hallmark pathways were upregulated
at this stage, such as PI3K−AKT signaling, angiogenesis/vasculo-
genesis, and epithelial cell migration, which were consistently
enriched at End but not T1 (Fig. 3d). Mitosis-related genes (e.g.,
MKi67 and TOP2A) were more upregulated at T2 than End or T1,
indicating that TNP cells at T2 had the greatest proliferation
capacity (Fig. 3e; Supplementary information, Fig. S3a). In addition,
glial differentiation pathways were also upregulated at T2 and
End, suggesting that tumorigenesis co-opts but hyperactivates
gliogenic programs of normal differentiation (Fig. 3d). Interest-
ingly, astrocyte lineage genes (e.g., NFIA and ALDOC) were more
upregulated at T2, while oligodendrocyte lineage genes (e.g.,
PDGFRA and SOX10) were more upregulated at End, suggesting
stage-specific upregulation of lineage programs (Fig. 3e; Supple-
mentary information, Fig. S3a). Consistent with the glial nature of
malignant gliomas, genes downregulated at T2 and End were
enriched for neuronal differentiation and synaptic functions (e.g.,
DCX, NEUROD2, and SYN1) (Fig. 3d).
To test whether such transcriptional dynamics are conserved

across different glioma models, we repeated our analyses on bulk
RNA-seq from TN and control samples, and observed similar
patterns of the tumorigenic trajectory and differential gene
expression burst at T2 stage that also enriched in malignant
glioma-related pathways (Supplementary information, Fig. S3b–d,
Tables S1, S2). Together, these results demonstrate that our
models resemble the gliomagenesis process and identify stage-
specific regulatory programs, highlighting T2 as a divergent point
between tumorigenesis and normal differentiation characterized
by a burst of oncogenic alterations.
To confirm these findings in vivo, we performed histological

analyses on Vector and TNP samples at T1 and T2. Vector cells at
both stages were mostly confined within the transplantation area
with limited Ki67 or OLIG2 expression, and downregulated
stemness marker hNES at T2 (Fig. 3f, g; Supplementary informa-
tion, Fig. S3e, f). In contrast, TNP cells were locally expanded at T1,
with very few mCherry+DAPI+ cells in the white matter or SVZ
which did not express hNES (Supplementary information, Fig. S3g).
At T2, TNP cells were dramatically expanded while maintaining
their hNES expression (Fig. 3f; Supplementary information, Fig. S3f).
A large number of mCherry+hNES+ cells diffusely infiltrated

distant areas of the brain including bilateral SVZs, exhibiting
histological features characteristic of malignant gliomas (Supple-
mentary information, Fig. S3g). In addition, the frequency of cells
expressing Ki67, OLIG2 at different stages is consistent with the
transcriptional dynamics of these genes, peaking at T2 and End,
respectively (Figs. 3g, h, 1f; Supplementary information, Fig. S3e).
Thus, these observations validate our in silico findings and further
support that T2 is an important stage during tumorigenesis.

A persistent stem-like cell population at all stages of
tumorigenesis
To further dissect the intra-tumor heterogeneity and pinpoint key
cellular component(s) during gliomagenesis, we performed time-
series single-cell transcriptomic analyses on the more aggressive
and 100%-penetrant TNP model (Fig. 3a). Using the 10× Genomics
platform, we sequenced and filtered cells based on stringent
criteria (Materials and Methods), resulting in 13,642 high-quality
human cells at four time points from T0 to End/EndSVZ TNP
samples (n= 11 with biological replicates). Gene expression
matrixes were processed using Harmony to minimize batch
effects.30 We visualized all cells with Uniform Manifold Approx-
imation and Projection (UMAP) and grouped them with unbiased
graph-based clustering (Fig. 4a).31 The resultant 13 clusters
expressed distinct lineage markers (e.g., NES, ASCL1, PTPRZ1,
APOE, OLIG2, and DCX), resembling human embryonic NSCs/radial
glia (NSC1-5), astrocytes (AC1 and AC2), OPCs and oligodendro-
cytes (OPC and OC), neuroblasts and neurons (NB and Neuron), as
well as quiescent and active NSCs in the adult mouse brain
(qNSC_adult and aNSC_adult) (Fig. 4b, c). Embryonic NSC-like cells
could be further divided into cycling (NSC1-3) and non-cycling
NSCs (NSC4, 5), depending on their expression of cell cycle
modules G1/S and G2/M (Fig. 4b, c). Based on these analyses, we
defined eight cell-type-specific gene expression modules exclud-
ing G2/M and G1/S genes, namely NSC_cycling (NSC_cc),
NSC_noncycling (NSC_ncc), aNSC_adult, qNSC_adult, AC, OPC,
OC and NB/Neuron (Fig. 4b; Supplementary information, Table S3).
The subpopulation identities of all cells were further confirmed

by meta-module score comparison using public human and
mouse single-cell gene sets of developing/adult brains and GBMs
(Fig. 4c).5,32,33 Consistent with previous reports, astrocytes and
qNSCs share many gene expression patterns,33 and the NPC2
module by Neftel et al. more specifically marks the neuronal
lineage than the NPC1 module, which is also expressed in
oligodendrocytes (Fig. 4c).5

Next, we assessed the subpopulation dynamics during tumor-
igenesis (Materials and Methods). For the more differentiated
lineages, we observed that neuron, astrocyte, and oligodendro-
cyte lineages reached their highest cellular frequency in a
sequential manner, peaking at T1, T2, and End/EndSVZ, respec-
tively. Immunostaining of lineage markers DCX, GFAP, and OLIG2
further supports a stepwise generation of each lineage (Fig. 4d, e,
3 h). Of note, the cellular composition of End and EndSVZ samples
were mostly similar, except that EndSVZ samples had higher
astrocyte frequency. For the stem-like lineages, over 97% of the
TNP cells at T0 were cycling and non-cycling NSCs (Fig. 4e). As
transplanted hNSCs generated more differentiated lineages at T1,
both cycling and non-cycling NSCs dropped sharply, while adult
NSCs cells reached their peaks. Strikingly, while non-cycling NSCs
and adult NSCs reduced to below 2% at End, cycling NSCs
remained stable at approximately 11%–17% from T1 till End,
despite the dramatic expansion of TNP cells (Fig. 4e). These data
indicate that cycling NSC-like cells are the major persistent stem-
like population during gliomagenesis.
To identify these NSC-like cells in vivo, we used Ki67 as a

surrogate marker since it was specifically expressed in cycling NSCs
(Fig. 4c). Indeed, the majority of Ki67+ cells in TNP brains expressed
stemness markers hNES and CD133 at both T1 and T2 (Fig. 4e). To
functionally validate the presence of NSC-like cells, we dissected out
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Fig. 3 T2 represents an important stage of divergence between tumorigenesis and normal differentiation. a Scheme for sample collection
of wild type (WT), Vector, TN, and TNP groups at four stages for WES, bulk RNA-seq, and scRNA-seq. b Principle component analysis (PCA) of
bulk RNA-seq and single-cell pseudo-bulk of WT, Vector, and TNP samples at different stages. Dots and curves are colored by sample groups.
Shapes represent different stages. c Left: The number of DEGs in TNP vs Vector at T1, T2, and End. Right: Venn diagrams illustrating the
relationship of significantly upregulated (top) or downregulated (bottom) genes in TNP vs Vector at each stage. d Gene ontology enrichment
analyses of DEGs in TNP vs Vector at each stage showing representative terms and adjusted P values (–log10). e Heatmap of the log2 fold-
change for significantly upregulated genes in TNP vs Vector at each stage. f Low magnification view of mCherry+ DAPI+ cells in Vector and
TNP brains at T1 and T2. Scale bars, 1 mm. g IF for mCherry/Ki67 in the central regions of Vector and TNP cells at T1 and T2. Triangular
arrowhead, autofluorescent debris without DAPI staining. Arrows, co-labeled cells. Scale bars, 100 μm. h The ratio of Ki67+mCherry+ cells and
OLIG2+mCherry+cells among total mCherry+ cells in Vector and TNP brains at each stage.
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Fig. 4 Time-series scRNA-seq uncovers temporal dynamics of distinct cell lineages. a UMAP analysis integrating high-quality single cells
from TNP samples at T0 to End/EndSVZ. Clusters are separated by colors. b Heatmap of all single cells ordered by UMAP clusters. Columns,
individual cells. Rows, genes. Boxed areas, gene expression modules. c Heatmap of scaled meta-module scores for each cluster based on
published datasets. d The cellular frequencies of NSC, AC, OPC/OC, and NB/Neuron subpopulations per sample at different stages. Error bars,
means ± SEM. e IF co-labeling of mCherry with Ki67/hNES, Ki67/CD133, GFAP and DCX in the central regions of TNP cells at T1 and T2. Arrows,
triple- or double-positive cells. Scale bars, 100 μm. f Dissociated mCherry+ tissue samples from TNP mice at T1, T2, and End form spheres
under the non-adherent stem cell culture condition. Scale bar, 100 μm. g The design and timeframe of BrdU pulse-chase assay. IP,
intraperitoneal injection. h IF co-labeling of mCherry with Ki67/BrdU in the central regions of TNP cells from mice pulsed at T1, T2, and T3 and
analyzed at T2, T3, and End, respectively. Arrows, BrdU+Ki67+mCherry+ cells localizing with DAPI. Arrowheads, BrdU+Ki67–mCherry+ cells.
Insets, BrdU+Ki67+mCherry+ cells surrounding the blood vessel. V, blood vessel. Scale bars, 100 μm.
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mCherry+ regions from TNP mice at different stages (n ≥ 2 each),
and cultured dissociated cells under the non-adherent stem cell
culture condition. Cells from all of the samples formed spheres (8/8),
similar to normal NSCs and GSCs (Fig. 4f). BrdU pulse-chase
experiments have been commonly used for lineage-tracing of
proliferating cells and identifying slowly-dividing, long-term BrdU
label-retaining stem cells in vivo. We performed a single-day, five-
time BrdU pulse on TNP mice at T1, T2, and T3 (around 3 months
post transplantation) and analyzed the mice four weeks later or till
End stage (Fig. 4g and Materials and Methods). We consistently
identified BrdU+Ki67+mCherry+ long-term label-retaining cells at
around 10% of total BrdU+mCherry+ cells (Fig. 4h). A subset of the
label-retaining cells surround the blood vessels, reminiscent of GSCs
(Fig. 4h). Together, these data support the persistence of a stem-like
cell population at all stages.
To rigorously test these findings, we further analyzed cells by

cluster and stage, and observed very consistent patterns (Supple-
mentary information, Fig. S4a, b). To rule out the influence of cell
cycle variances, we performed a simple linear regression against the
cell cycle score in Seurat,34 and obtained similar results, confirming
the cluster identity, lineage dynamics and the persistence of NSC-
like cells (Supplementary information, Fig. S4c–f).

De novo gliomagenesis is driven by sequential fate-switches of the
NSC-like cells
The unique lineage dynamics during gliomagenesis prompted us
to investigate whether NSC-like cells sequentially generate more
differentiated lineages. We first visualized all cells with a diffusion
map by subpopulation and stage (Supplementary information,
Fig. S5a, b). We observed six distinct tips with NSC at one end and
more differentiated cells forming five distinct branching tips:
neuronal cells at T1 (Neuron-T1), astrocyte from T1 to End/EndSVZ
(AC-T1, AC-T2, and AC-End), and oligodendrocytes at End (OC-
End). We further reconstructed a gliomagenesis tree using a
diffusion-based simulation approach, URD.35 It inferred the
pseudotime of each cell and performed random walks from the
root (NSC-T0) to these tips to reconstruct a branching trajectory
tree, which was visualized by a force-directed layout (Fig. 5a). The
reconstructed tree largely resembled the lineage specification
trajectories expected from classical neural differentiation models,
based on the trajectory-specific expression of known marker
genes (Fig. 5b; Supplementary information, Table S4).
Importantly, the gliomagenesis tree revealed the transcriptional

dynamics of NSC-like cells during tumorigenesis. NSC-like cells
spontaneously clustered by stage and occupied distinct branch
points leading to different lineages, indicating a dramatic fate-
switch (Fig. 5c; Supplementary information, Fig. S5b). To gain an
overview of the transcriptional profiles of NSC-like cells at different
stages, we grouped all single cells by stage and cell type, and
compared their expression of our meta-gene modules (Fig. 5d).
While NSC-like cells maintained the expression of NSC_cc module
at all stages, they sequentially upregulate aNSC/neuron, qNSC/AC,
and OPC/OC modules at T1, T2, and End/EndSVZ, respectively.
Notably, T2 is a stage when NSC-like cells downregulate neuronal
programs and upregulate glial programs, reminiscent of the
neurogenic-to-gliogenic switch during normal neural develop-
ment. This temporal gene expression pattern was further validated
using published meta-modules (Supplementary information,
Fig. S5c). It is evident that during in vivo gliomagenesis from T0
to End/EndSVZ, NSC-like cells sequentially upregulated MES-like,
NPC2-like, AC-like and OPC-like meta-modules defined in end-
stage human GBMs5 (Fig. 5e). Concurrently, we observe concerted
tumor subtype conversions among individual TNP samples at
different stages, from Mesenchymal to Classical and Proneural
(Supplementary information, Fig. S5d).
To test whether NSC-like cells undergo fate-switches in vivo, we

first analyzed their expression of OLIG2. Consistent with a
neurogenic-to-gliogenic switch, mCherry+Ki67+ cells barely

express OLIG2 at T1, yet the ratio of triple-labeled cells increased
to around 40%–50% at T2 and 70%–80% at End (Supplementary
information, Fig. S5e, f). Next, we quantified the lineage distribu-
tion of BrdU-labeled cells in the BrdU pulse-chase assay. We used
DCX, GFAP, and NG2 as lineage markers for NPCs/neurons,
astrocytes, and OPCs, respectively. We used stringent criteria to
define co-localizing cells as the ones with mCherry+BrdU+ nuclei
closely surrounded by the cytoplasmic staining of DCX, GFAP, or
NG2. The majority of T1-labeled cells generated DCX+ cells, while
T2-labeled cell predominantly generated GFAP+ cells (Fig. 5f;
Supplementary information, Fig. S5g, h). The proportion of NG2+

cells increased from less than 1% during T1-T2 to 15%-18% during
T3-End (Fig. 5f; Supplementary information, Fig. S5h). These data
provide strong support fate-switches of NSC-like cells in vivo.
To test whether the fate-switch of NSC-like cells during

gliomagenesis is dependent on the genetic context of TNP hNSCs,
we further analyzed the TN samples. Deconvolution of TN bulk
RNA-seq revealed a similar shift in cellular composition from
neuronal dominance to glial dominance, and a late-stage
emergence of the oligodendrocyte lineage (Supplementary
information, Fig. S6a). Primary culture of TN tissue at different
stages also generated spheres under the non-adherent stem cell
culture condition (Supplementary information, Fig. S6b). RNA-seq
of TN spheres at each stage further demonstrate their lineage bias
towards neurons at T1 and astrocyte or oligodendrocyte at later
stages (Supplementary information, Fig. S6c). Like in TNP mice, the
ratio of Ki67+OLIG2+mCherry+ cells in TN mice significantly
increased from T1 and T2 (Supplementary information, Fig. S6d, e).
In addition, we generated another model (TP) using gRNAs
targeting TP53 and PTEN (Supplementary information, Fig. S6f). Of
note, human GBM samples with mutations or deletions in both
TP53 and PTEN represent ~15% of TCGA GBM cohort. Although TP
mice had a lower malignant glioma penetrance, we observed a
significant decrease of Ki67+DCX+mCherry+ cells and an increase
of Ki67+OLIG2+mCherry+ cells among total Ki67+mCherry+ cells
from T1 to T2 (Supplementary information, Fig. S6g–i). Thus, the
fate-switches of NSC-like cells during gliomagenesis do not appear
to depend on the TNP genotype.

Additional genetic alterations play a limited role in the sequential
fate-switches of NSC-like cells
Genetic drivers such as EGFR and PDGFRA were proposed to
influence the distribution of cellular states in human GBM.5 Thus, we
sought to determine genetic alterations that drive the fate switches
of NSC-like cells by analyzing the time-series deep WES (400X) data
from TNP, TN, and Vector samples (Fig. 3a). The overall frequency of
non-silent mutations in TN and TNP samples steadily increased from
stages T1, T2 to End, reaching a level between human LGGs and
GBMs (Supplementary information, Fig. S7a). We next assessed the
recurrent mutations and did not detect clonal-level mutations
among the 66 most frequently mutated genes in human GBM36

(Supplementary information, Fig. S7b), or any significant chromoso-
mal alterations in WES-based chromosome number variation (CNV)
analysis (Supplementary information, Fig. S7c). A small number of
recurrently mutated genes, such as SLC25A39 and ERCC5, had low
clonal frequencies (below 5%) (Supplementary information, Fig. S7d),
did not exhibit stage-specific enrichment, and were not previously
shown to regulate the fate specification of NSCs.
Conversely, we consistently identified mutations or large

deletions in the tumor-initiating drivers (TP53/NF1 and TP53/NF1/
PTEN) among TN and TNP samples, confirming the success of
genome-editing. Provided that we did not perform single-cell
colony selection, we reasoned that mosaic mutations co-existed in
the initial TN and TNP hNSCs, which could be used as clonal
lineage tracers. Indeed, we observed clonal selection patterns at
the genome-edited loci of TP53, NF1, PTEN, and the selection at
TP53 loci was the most dramatic. It appears that TNP and TN
tumors actively selected for TP53 mutants with large deletion(s)
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between exons 5 and 6, evidenced by a progressive reduction of
sequencing reads between the two TP53 gRNA target sites
(Supplementary information, Fig. S7e, f). Another example is a
mutant form of TP53 with a short deletion in exon 5, which was
below the detection level at early stages but enriched in end-

stage TNP samples (Supplementary information, Fig. S7g).
Together, these data support that while TNP and TN hNSCs
undergo clonal evolution and mutagenesis during tumorigenesis,
additional genetic alterations play a limited role in the fate-
switches of NSC-like cells in our models.

Fig. 5 Reconstructed gliomagenesis tree highlights the fate switches of the NSC-like cells. a Gliomagenesis tree reconstructed by URD.
Each subpopulation is separated by colors. b Pseudotime analyses for normalized expression of marker genes along different lineage
trajectories. c Cycling NSCs at different stages highlighted on the gliomagenesis tree. d Heatmap of scaled meta-module scores for each
subpopulation ordered by stage. e Relative expression of meta-modules by Neftel et al. in NSC-like cells at different stages of tumorigenesis.
*, the most highly expressed module with statistical significance (P < 0.01). f IF co-labeling of mCherry with DCX/BrdU (left) and NG2/BrdU
(right) in the central regions of TNP cells from mice pulsed at T1, T2, and T3 and analyzed at T2, T3, and End, respectively. Arrows, triple-
positive cells. Arrowheads, BrdU+DCX–mCherry+ cells (left) or BrdU+NG2–mCherry+ cells (right). Insets, a representative BrdU+NG2+mCherry+

cell. Scale bars, 100 μm.
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The tumorigenic trajectory of NSC-like cells reveals stage-specific
regulatory programs and resembles human GBM development
Since we did not observe additional fate-specifying genetic
events, we further investigated whether the sequential fate
switches of NSC-like cells were regulated through transcriptional
reprogramming. We focused on the two major cycling NSC
populations (NSC1 G2/M and NSC2 G1/S) and performed
pseudotime analyses. The inferred pseudotime for these two
populations largely resembled the actual time from T0 to End/

EndSVZ (Fig. 6a, b; Supplementary information, Fig. S8a). Next, we
determined stage-specific gene expression dynamics and cate-
gorized DEGs into distinct temporal patterns (Fig. 6b; Supplemen-
tary information, Fig. S8a and Table S5). We also performed
differential gene expression analyses on cycling NSC-like cells in
different branches to uncover the stage- and lineage-specific
genetic guidance underlying gliomagenesis (Supplementary
information, Fig. S8b, Table S6). Consistent with the sequential
fate-switches of NSC-like cells, the expression of lineage genes for
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neurons, astrocytes and oligodendrocytes peaked at T1 (e.g.,
MAP2, STMN2), T2 (e.g., CST3, SPARCL1, EGFR) and End/EndSVZ
(e.g., PDGFRA, SOX10), respectively (Fig. 6b, c). In addition to
known markers, pseudotime analysis also identified more than 30
novel potential regulators among the top 100 DEGs, which have
not been previously shown to drive gliomagenesis. For example,
while many neuron-related genes were downregulated at stage
End, C1QL1, a secreted protein implicated in synaptogenesis,37

was upregulated in tumorigenic TNP hNSCs (Fig. 6d). In contrast,
we did not observe an upregulation of C1QL1 in HOPX+
embryonic hNSCs during human hippocampal development,
which also underwent neurogenic-to-gliogenic switch,38 suggest-
ing that the upregulation of C1QL1 is tumor-specific and may
promote tumorigenesis (Fig. 6d). Consistently, C1QL1 is expressed
at a higher level in GBM compared to the normal brain using bulk
RNA-seq data from TCGA and GTEx (Fig. 6e).
We further validated the functional significance of C1QL1 in

gliomagenesis. When overexpressed in TNP hNSCs, C1QL1
increased their colony formation capacity (Fig. 6f). RNA-seq
analyses revealed that C1QL1-overexpression leads to elevated
level of Notch signaling (a well-established stemness pathway)39

in TNP hNSCs (Fig. 6g). To examine the effect of C1QL1 in vivo, we
transplanted C1QL1-overexpressing TNP hNSCs into NOD-SCID
mice. These mice developed malignant gliomas significantly faster
than control TNP mice, with a median survival of 120 days
compared to 140 days for controls (Fig. 6h, i). These data confirm
that C1QL1 is a glioma promoting factor. Thus, pseudotime
analyses identified stage-specific transcriptional programs, and
uncovered novel oncogenic candidates for functional validations.
The plasticity of NSC-like cells is reminiscent of GSCs or stem-like

cells in human gliomas. Thus, we investigated whether previously
defined GSC signature genes were upregulated along our
simulated tumorigenic trajectory of NSC-like cells. We compared
the expression patterns of four published gene sets, including two
gene sets determined by IDH-wildtype GBM cellular models (GBM
GSC core TF and GBM stemness score), along with two stemness
gene sets based on single-cell transcriptomic analyses of
oligodendrogliomas and IDH-mutant gliomas8,40–42 (Supplemen-
tary information, Fig. S8c). In agreement with an NSC-to-GSC-like
trajectory, GBM GSC core TF gene set was continuously
upregulated along the pseudotime. Interestingly, GBM stemness
score exhibited a different temporal pattern. While this gene set
was consistently upregulated at in vivo stages T1 to End/EndSVZ
compared to T0, it reached its peak at T2 instead of End/EndSVZ,
suggesting that NSC-like cells already adopted a GSC-like
“stemness” program before the development of full-blown tumors,
consistent with the notion that T2 is an important stage for
gliomagenesis. In contrast, the oligodendroglioma stemness score
was not dramatically different at each stage, while the IDH-mutant
glioma stemness score was reduced along the pseudotime,
suggesting that our inferred pseudotime closely resembles the
evolution of mutant NSCs towards GSCs of IDH-wildtype GBMs.
We further cross-examined 10X scRNA-seq data of both pediatric

and adult GBMs with our gene modules,5–7 and identified similar

NSC-like cells with strong NSC_cc signatures (Supplementary
information, Fig. S8d, e). Importantly, NSC-like cells from individual
patients can be divided into T1/T2-like, T2-like, T2/End-like, and
End-like based on their correlation with NSC-like cells in our model
at different stages, suggesting that gliomagenesis in patients may
follow a similar trajectory of sequential fate-switches (Fig. 6j).

The gliomagenic trajectory highlights stage-specific TF networks
and provides a blueprint for early-stage interventions
Since NSC-like cells upregulated GBM core TFs, we sought to
determine whether transcriptional reprogramming through TFs
underlies the sequential fate switches of NSC-like cells. Indeed,
many important TFs were upregulated at each stage and formed
stage-specific transcriptional networks (Supplementary informa-
tion, Table S5). While NSC-like cells at T2 and End/EndSVZ share a
set of TFs at the core of the transcriptional network such as AP-1
TFs (FOS, FOSB, JUN, JUNB, JUND) and MYC, they respectively
upregulate astrocyte-specifying TFs (e.g., NFIA, SOX9, and HES1) at
T2 and oligodendrocyte-specifying TFs at End/EndSVZ (e.g., NKX2-
2 and SOX10) (Fig. 7a).43 Notably, unlike other oligodendrocyte-
specifying TFs which were specifically upregulated at End/EndSVZ,
OLIG2 was already upregulated at T2, consistent with histological
analyses (Supplementary information, Figs. S9a, S5e, f).
Intersectional analyses revealed that 40%–50% of upregulated

TFs in NSC-like cells were not differentially expressed between bulk
TNP and Vector samples at the same stages, indicating a cell-type-
specific regulatory program in NSC-like cells (Fig. 7b). AP-1 TFs were
among the TFs significantly upregulated in NSC-like cells but not in
the bulk sample comparison. They occupied the center of the TF
network at T2 and End, and were the top upregulated genes along
the tumorigenic but not normal developmental trajectory (Fig. 7c).
Thus, we sought to determine whether inhibition of AP-1 at
different stages is sufficient to disrupt the tumorigenic trajectory of
NSC-like cells. We used a specific AP-1 inhibitor T5224, which has
advanced to phase II clinical trial but not been previously tested for
the treatment of malignant gliomas.44 10-day treatment at T2
dramatically reduced the area and density of TNP cells, and
restricted their invasion (4/4) (Fig. 7d). Moreover, a significant
portion of the remaining TNP cells underwent apoptosis character-
ized by high-level expression of cleaved Caspase 3, which rarely
occurs in vehicle-treated TNP mice (Fig. 7e, f). Apoptotic cells were
particularly evident around the blood vessels, where many Ki67+

NSC-like cells reside (Fig. 7e). Consistently, we observed a drastic
decrease of Ki67+ cells and OLIG2+ cells in the treatment group
(Supplementary information, Fig. S9b). We repeated this transient
10-day T5224 treatment paradigm on TNP mice at T1 and T2 based
on a larger cohort of > 10 mice in each group, and observed
significant survival benefits (Fig. 7g).
In contrast, when we treated TNP mice at T3 with vehicle or T5224

for 10 days, mice from both groups still developed tumors as early as
20 days after treatment withdrawal, even though we observed large
necrotic regions in the tumor areas of T5224-treated mice but not in
vehicle-treated controls (Supplementary information, Fig. S9c, d).
Taken together, these results support the notion that different TFs

Fig. 6 Pseudotime analyses identify stage-specific regulatory programs. a Diffusion map for NSC1 (G2/M), cells colored by stage.
b Heatmap of gene expression cascades along the pseudotime of NSC1. Columns, pseudotime-ordered cells. Rows, genes. Colors in the top
row indicate the actual sample time of each cell. Genes were clustered by their temporal expression patterns (left bars). c Trajectory plots of
representative genes in (b) visualized by normalized expression. d Trajectory plots of C1QL1 in tumorigenic TNP hNSCs (left) and embryonic
hNSCs during human hippocampal development (right). e The log2-transformed TPM of C1QL1 from TCGA GBM and matched GTEx normal
brain RNA-seq. P < 0.01, one-way ANOVA test. f Left, colony formation assays of TNP+ C1QL1 hNSCs and TNP+ V2TG hNSCs. Scale bars, 1 cm.
Right, the total number of colonies. n= 3 for each group. P values, Student’s t-test. g Gene ontology enrichment analyses of DEGs in TNP+
C1QL1 vs TNP+ V2TG hNSCs showing representative terms and adjusted P values (–log10). h The brain-tumor-free survival curves of TNP+
C1QL1 and TNP+ V2TG mice. n, the number of samples; P value, Log-rank (Mantel-cox) test. i IF for mCherry/DAPI and mCherry/OLIG2 in TNP
+ C1QL1 brains at the end stage. Scale bars, 1 mm (upper panels) and 50 μm (lower panels). j Heatmap of the Pearson correlation coefficients
between NSC-like cells in human GBM samples (columns) and TNP samples at different stages (rows) based on their expression of DEGs
in NSC1.
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Fig. 7 Transient early-stage AP-1 inhibition impedes gliomagenesis in vivo. a Stage-specific TF network in TNP NSC-like cells at T2 (left) and
End (right). b The relationship between upregulated TFs in NSC-like cells at T2, End/EndSVZ from scRNA-seq, and those upregulated at the
same stages in bulk TNP vs Vector samples (Fig. 3e). c Trajectory plots of FOS and JUN in tumorigenic TNP hNSCs (left) and developing
embryonic hNSCs (right). d Low magnification view of mCherry+DAPI+ cells in brain sections of TNP mice treated with vehicle or T5224 for
10 days at T2. Scale bars, 1 mm. e IF of cleaved caspase 3 (cCaspase3) and mCherry on brain sections of T2 vehicle- or T5224-treated TNP mice.
Arrows, co-labeled cells. Arrowhead, cCaspase3+/DAPI– cell. V, blood vessel. Scale bars, 50 μm. f The number of mCherry+ and
cCaspase3+mCherry+ cells per high-power field in the central tumor areas of TNP mice treated with vehicle or T5224 at T2 for 10 days. n= 4
for each group, P values from Student’s t-test. g The glioma-free survival curves of TNP mice treated with vehicle or T5224 at T1 or T2. n, the
number of animals. P value, Log-rank (Mantel-cox) test.
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networks may drive the sequential fate switches of NSC-like cells, and
targeting core TFs such as AP-1 at early stages of gliomagenesis may
disrupt the tumorigenic trajectory of NSC-like cells.

DISCUSSION
The poor prognosis of GBM underscores the need to develop
novel diagnostic and therapeutic paradigms based on a better
understanding of the disease etiology. In this study, we traced the
natural history of gliomagenesis in hNSC-derived malignant
glioma models, and depicted a comprehensive, multi-omic
landscape of de novo gliomagenesis, shedding light on an
important yet understudied “black box” biological process.
Our analyses are mainly built upon two newly developed,

highly-penetrant malignant glioma models that resemble human
GBM, offering us a unique opportunity to track de novo
gliomagenesis from hNSCs in vivo, which has not been achieved
in previous NSC-derived glioma models. Since these models are
developed from a well-characterized human ES cell line (Hues8),
they are easily reproducible and can be scaled up for preclinical
drug screening. By alternating the initiating mutations, our
protocol would allow standardized and fast generation of a series
of hNSC-derived, human-relevant glioma models. One limitation
of these models is that tumorigenesis occur in an immunocom-
promised microenvironment. The impact of immune cells on the
gliomagenic trajectory needs to be determined in humanized
mouse models in future studies. In addition, unlike human tumors,
CNVs are infrequent in these models, possibly due to the relatively
short tumor latency and the introduction of strong genetic drivers
reducing the selective pressure for CNV drivers.
The genetic combinations we used in this study are present in

human GBMs,3,20 and our key findings are validated by human
GBM samples and a TP model representing a more general
genetic context. While we cannot rule out that hNSCs with
different driver combinations or with a different genetic back-
ground may exhibit distinct tumorigenic trajectories, the consis-
tency among our models and the fact NSC-like cells in human
GBM align in a similar trajectory supports a common path of de
novo tumorigenesis from mutant hNSCs.
We defined different stages of early gliomagenesis in vivo and

identified a persistent, highly proliferative NSC-like subpopulation
at all stages through scRNA-seq and BrdU label retention assays.
Abnormal NSC/NPC-like cells at early stages of gliomagenesis have
been observed in several GEMMs, and were proposed to drive
tumor initiation and invasion.10,14,45 However, these studies lack the
resolution to comprehensively characterize these cells and track
their fate during early tumorigenesis. Through multi-omic time-
series analyses, we revealed that hNSCs and NSC-like cells, even
after acquiring all the necessary genetic drivers, need to undergo
multi-step reprogramming and fate-switches to generate malignant
lineages. These cells sequentially adopt NPC-like, AC-like, and OPC-
like programs to generate distinct malignant lineages while
maintaining NSC characteristics, which is confirmed by lineage
tracing experiments. Importantly, NSC-like cells with each fate can
be correlated with their counterparts in individual GBM samples,
which validates the human relevance of our models. Furthermore,
this may provide a potential explanation for a longstanding
question in the field why GBMs from different patients have
distinct types of lineage-biased glioma stem/stem-like cells.6,46

The fate-switch model also helps address how human GBMs end
up with vastly different distributions of heterogeneous cellular states.
Such distribution is likely determined by the specific stage when the
tumor becomes clinically manifested along the tumorigenic trajectory
(Supplementary information, Fig. S9e). This may be influenced by
stage-specific fate determinants uncovered in this study, as well as
known genetic drivers such as EGFR and PDGFRA amplification.
Tumors manifested at intermediate stages could exhibit hybrid
phenotypes, which were observed in human GBMs (Fig. 6j).4,5 Our

model system would serve as a good platform to test these
hypotheses in future studies.
While previous studies have drawn similarities between

tumorigenesis and normal development, we rigorously distin-
guished these two trajectories. We show that glioma initiating
cells at different stages do not bear the same level of oncogenic
alterations, but rather exhibit an “oncogenic burst” during the
neurogenic-to-gliogenic switch, characterized by an abrupt 5-fold
increase of DEGs. TNP cells during the neurogenic phase are not
dramatically different from control at the transcriptional level and
pathologically mimic “carcinoma in situ”. Only after the
neurogenic-to-gliogenic switch do they diffusely infiltrate the
brain areas including the SVZ. Thus, the period during which
hNSCs undergo neurogenic-to-gliogenic switch may represent a
window of opportunity for early-stage diagnosis and treatment.
We functionally confirmed two actionable targets (C1QL1 and

AP-1) based on our analyses of the gliomagenic trajectories.
C1QL1 is one of the few neuron/synapse-related proteins that are
upregulated in NSC-like cells, against the backdrop of a general
downregulation of neuronal programs. While more detailed
mechanism of its tumor-promoting function is yet to be
determined, its reported role in synapse formation suggests it
may be involved in the recently discovered glioma-neuron
interactions.47,48 As a secreted protein, C1QL1 may also serve as
an early diagnostic marker for GBM. As for AP-1 TFs, we show that
they are the core TFs in the transcriptional network during the
neurogenic-to-gliogenic switch, and transient AP-1 inhibition at
this stage with T5224, a drug not previously used for the
treatment of malignant glioma, is sufficient to inhibit gliomagen-
esis in vivo and provide survival benefits. Alternatively, targeting
the fate-switch regulators could also potentially inhibit glioma-
genesis. Thus, the tumorigenic trajectory reveals stage-specific
treatment vulnerabilities in NSC-like cells and potential early
diagnostic markers before the clinical manifestation of GBM.
In summary, our data demonstrate the critical steps and

molecular regulators underlying de novo gliomagenesis, and
provide a valuable resource and a blueprint for potential stage-
specific early interventions to disrupt the tumorigenic trajectory.

MATERIALS AND METHODS
Cell lines and cell culture
The iCas9 hPSCs were gifted by Dr. Danwei Huangfu at Sloan-
Kettering Institute and Dr. Jie Na at Tsinghua University. iCas9
hNSCs were differentiated from iCas9 hPSCs based on previous
reports.49 Briefly, iCas9 hPSCs were cultured on matrigel-coated
dishes and fed daily with mTeSR (STEMCELL) for 7 days. On the
next day, mTeSR was substituted by N2 medium (DMEM/
F12 supplemented with 0.5× N2 supplement (Gibco), 1 μM
dorsomorphin (Tocris), and 1 μM SB431542 (STEMCELL)) for
1–2 days. hPSC colonies were lifted off, cultured in suspension
on the shaker (95× rpm at 37 °C) for 8 days to form embryoid
bodies (EBs) and fed with N2 media. EBs were then mechanically
dissociated, plated on a matrigel-coated dish, and fed with hNSC
maintenance medium (DMEM/F12 supplemented with 1×
N2 supplement, 1× B27 supplement (Gibco), 1% penicillin/
streptomycin, and 20 ng/mL bFGF (Gibco)). The emerging rosettes
were picked manually, dissociated completely using Accutase
(Gibco), and plated on a poly-ornithine/laminin-coated plate. The
resultant hNSCs were expanded and maintained in the hNSC
maintenance medium. The 293T cells were purchased from the
cell resource center of Shanghai Institutes for Biological Sciences,
Chinese Academy of Sciences and cultured in DMEM medium with
10% FBS and 1% penicillin/streptomycin (Gibco).

Animals
Female NOD/SCID mice at 4–5 weeks of age were purchased from
Beijing Vital River Laboratory Animal Technology (Beijing, China).
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Mice were housed in pressurized, individually ventilated cages
(PIV/IVC) and maintained under specific-pathogen-free conditions,
with free access to food and water in a 12 h light/dark cycle. All
animal studies were approved by the Animal Care and Use
Committee of Sichuan University.

Orthotopic xenograft mouse models
Vector, TN, TNP, TP, TNP+ V2TG, and TNP+ C1QL1 hNSCs were
dissociated by Accutase. Single-cell suspensions were prepared in
sterile Hanks Balanced Salt Solution (HBSS, Gibco) immediately
before the xenograft procedure. 1 × 105 cells in 4 µL HBSS were
stereotaxically injected into the striatum of female NOD/SCID mice
at 5–6 weeks of age using a 10 μL micro-syringe (RWD life science,
Shenzhen, China). Stereotactic coordinates used were 0.5 mm
anterior to the bregma, 3.0 mm lateral to the midline, and 3.0 mm
deep. After the infusion of cells, the syringe needle was kept in
place for 2 min, and then withdrawn manually at a rate of 0.875
mm/min to minimize the backflow of cells.

Vectors and gRNAs
All the gRNAs used in this study were designed at the ATUM
website (https://www.atum.bio/eCommerce/cas9/input) and
synthesized by TsingKe Biological Technology (Beijing, China). At
least 3 top-ranked gRNAs were selected for each genetic locus.
These gRNAs were cloned into pLentiCRISPR V2 (Addgene), and
their targeting efficiency was assessed in 293T cells. The most
efficient gRNAs evidenced by T7EI and western blot analyses were
selected for subsequent genome-editing in iCas9 hNSCs and
listed below:
TP53-5-gRNA (exon 5) caccgGGCACCCGCGTCCGCGCCA
TP53-6-gRNA (exon 6) caccgAACACTTTTCGACATAGTG
NF1-1-gRNA (exon 1) caccGGGAGGACATGGCCGCGCAC
NF1-31-gRNA (exon31) caccgACTGTAGCTTTATTCAGTA
NF1-32-gRNA (exon 32) caccgAGAACAGCATCGGTGCAGT
These gRNAs were cloned into pLentiV2T-mCherry (V2TC)

vector, which was constructed from pLentiCRISPR V2 vector by
replacing Cas9 sequence with a reporter gene mCherry. The gRNA
combination for TN group includes gRNAs targeting TP53 exons 5
and 6, NF1 exons 31 and 32. The gRNA combination for TNP group
includes gRNAs targeting TP53 exons 5 and 6, NF1 exon 1, and
PTEN exon 1. The gRNA combination for TP group includes gRNAs
targeting TP53 exons 5 and 6, and PTEN exon1. Every gRNA is
driven by a unique human U6 promoter. To overexpress genes in
TNP hNSCs, we constructed pLentiV2TG vector from pLentiV2TC
by changing the mCherry sequence to neomycin- and kanamycin-
resistant genes NeoR/KanR, and replacing the sequence from hU6
promotor to U6 terminator with EF-1α-core promoter sequence.
The coding sequence of C1QL1 was synthesized by Sangon
Biotech (Shanghai, China), and was cloned into pLentiV2TG
downstream of the EF-1α-core promoter.

Lentiviral packaging and viral transfection of hNSCs
Lentiviruses carrying V2TC, V2TC-TN, V2TC-TNP, V2TC-TP, V2TG,
and V2TG-C1QL1 were produced in 293T cells through calcium
phosphate precipitation packaging system. Harvested lentiviruses
were further concentrated (10×) by Lenti-X™ Concentrator kit
(Takara) to remove excessive FBS. For genome-editing in iCas9
hNSCs, cells were plated on 6-well plates coated with 10 μg/mL
polyornithine (Sigma) and 5 μg/mL laminin (Gibco), and cultured
in hNSC maintenance medium with 2 μg/mL doxycycline. Once
hNSCs reached 50% confluency 12-24 h after being plated, 100 μL
concentrated lentivirus carrying V2TC, V2TC-TN, V2TC-TNP, or
V2TC-TP were added to the medium for 8 h. Infected hNSCs were
cultured in fresh medium containing 2 μg/mL doxycycline for 48 h,
and then screened in the culture medium containing 1 μg/mL
puromycin. The resultant hNSCs were passaged three times, and
the mutation efficiency was assessed by T7EI, quantitative real-
time PCR (qRT-PCR) and western blot. To overexpress C1QL1 in

TNP hNSCs, hNSCs were similarly plated and infected with
lentiviruses carrying V2TG or V2TG-C1QL1 for 8 h. Infected hNSCs
were cultured in fresh medium for 48 h, and then screened in the
culture medium containing 800 μg/mL G418 until positive
colonies formed in about two weeks. The resultant hNSCs were
passaged three times, and the expression levels of C1QL1 in these
cells were assessed by qRT-PCR.

T7EI analysis for assessment of genome-editing efficiency
Genomic DNA was extracted from control and mutant hNSCs.
Genomic regions flanking the gRNA-target sites were amplified by
PCR. For T7EI assays, 5 μL of PCR products were denatured and re-
annealed in T7EI Buffer (ViewSolid Biotech, Beijing) in a total
volume of 10.5 μL using the following protocol: 95 °C, 5 min; 95 °
C–75 °C at –0.1 °C/s; 75 °C–16 °C at −0.1 °C/s; 16 °C, 2 min. Then,
10.5 μL of hybridized PCR products were treated with 5U T7EI
enzyme at 37 °C for 30min in 11 μL final reaction volume.
Products were then analyzed on 2% agarose gels and imaged with
a Gel Doc imaging system (Bio-Rad). Quantification was based on
relative band intensities measured by ImageJ. Indel percentage
was determined by the formula 100 × (1– (1– (b+ c) / (a+ b+ c))
1/2), where a is the integrated intensity of the undigested PCR
product, and b and c are the integrated intensities of each cleaved
product.50 PCR primers are listed below:
TP53-p5F: 5’TGTAGACGCCAACTCTCTCT3’
TP53-p5R: 5’GCAATCAGTGAGGAATCAGAGG3’
TP53-p6F: 5’GCCTCTGATTCCTCACTGATT3’
TP53-p6R: 5’TTTCACCGTTAGCCAGGATG3’
NF1-p31F: 5’AGTAGACATGATTGGGTCTCAAC3’
NF1-p31R: 5’GTGACTCTTTCCCACCATATACTT3’
NF1-p32F: 5’ATTTGGTCTGCTTTCATTACTCATC3’
NF1-p32R: 5’GGTAGTGTTTCTAACCTTCCCA3’
NF1-p1F: 5’CGTGGAAAGGATCCCACTT3’
NF1-p1R: 5’GTTACCCACCTCTGCTCAAA3’
PTEN-p1F: 5’CAGCCGTTCGGAGGATTATT3’
PTEN-p1R: 5’CCCTCAGGAAGAGACCATATAGA3’

Tissue preparation for histology and sequencing
For histological analysis, we utilized both paraffin and frozen
sections. Mice at various time points were perfused with 4%
paraformaldehyde (PFA). Brains were dissected, prepared as
coronal brain slices, and processed for either paraffin-embedded
or frozen sections. For paraffin sections, brains were post-fixed in
4% PFA overnight at 4 °C, and paraffin-embedded after dehydra-
tion (Leica). For frozen sections, brains were post-fixed in 4% PFA
overnight at 4 °C, and then transferred to 30% sucrose overnight
at 4 °C. Dehydrated brain tissues were then embedded in O.C.T.
compound (Tissue-Tek) and frozen on dry ice. Serial sections were
coronally prepared at 5 μm for paraffin sections or 10 μm for
cryostat sections.
For genomic and transcriptomic analyses, mice at various time

points were sacrificed by cervical dislocation. Brains were quickly
dissected, washed twice with ice-cold DPBS (without Ca2+ and Mg2+,
Gibco), and prepared as coronal brain slices. Tissues around the
transplantation sites or along the lateral ventricle/SVZ with strong
mCherry signals were carefully and maximally dissected under a
fluorescent dissection microscope (Olympus). For bulk WES and RNA-
seq, dissected tissues were snap-frozen in liquid nitrogen and sent to
Novogene (Beijing, China) and Anoroad (Beijing, China) for DNA/RNA
extraction and sequencing. For scRNA-seq, dissected tissues were cut
into small pieces, and incubated with 1mg/mL collagenase type I
(Gibco) plus 0.5mg/mL collagenase type IV (Gibco) at 37 °C for 15
min, followed by mechanical dissociation through pipetting for
10 times. Dissociated cells were filtered through a 70 μm
strainer, and centrifuged at 300× g for 5min. The resultant
single cells were washed with HBSS w/o Ca2+ and Mg2+ (Gibco)
for two times, and re-suspended as single cells at a concentration of
1.2 × 103 cells/µL in HBSS w/o Ca2+ and Mg2+. For each sample,
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10,000 cells (live cells > 90%) were used for subsequent library
construction. For scRNA-seq on cultured TNP cells, cells were
dissociated with Accutase, washed with HBSS w/o Ca2+ and Mg2+

for two times, and re-suspended as single cells at a concentration of
1 × 103 cells/µL in HBSS w/o Ca2+ and Mg2+. 8000 cells (live cells
> 90%) were used for subsequent library construction.

Western blot analysis
Cells were harvested, washed with phosphate-buffered saline
(PBS), lysed in RIPA buffer (Beyotime Biotechnology) with 1 mM
PMSF, and centrifuged at 14,000× g, 4 °C for 5 min. Protein
samples (approximately 20 μg each) were analyzed by SDS-PAGE
and electro-transferred to a PVDF membrane (Millipore). The blots
were then blocked in 5% non-fat milk in TBST, followed by
incubation of primary antibodies at 4 °C overnight. After washing,
the blots were incubated in horseradish peroxidase (HRP)-
conjugated secondary antibodies at room temperature for 1 h.
Signals were detected using ECL or ECL Plus (GE Healthcare)
followed by film development. The primary antibodies used are as
follows: Pten (1:1000, Cell Signaling Technology), Nf1 (1:1000,
Abcam), p53 (1:1000, Abcam), β-Actin (1:1000, Cell Signaling
Technology), GAPDH (1:1000, Cali-Bio).

Immunofluorescence (IF)
For IF staining on tissues, frozen brain sections were oven-dried at
42 °C for 30 min, rinsed and rehydrated with PBS, and treated with
0.3% Triton X-100 in PBS for 20 min at RT. Sections were then
blocked with 2% goat serum in PBS for one hour at RT, and
incubated with primary antibodies overnight at 4 °C. Primary
antibodies were visualized by species-specific goat secondary
antibodies conjugated to Alexa Fluor dyes (Alexa 488/555/647,
1:1000, Invitrogen). Sections were then stained with DAPI
(1 μg/mL) for 5 min. Slides were coverslipped and imaged under
an Olympus BX51 fluorescent microscope. Antibodies used in this
study were: Olig2 (1:1000, Millipore), GFAP (1:2000, Abcam),
hNESTIN (1:1000, Abcam), Ki67 (1:200, BD), CD133 (1:1000, Abcam),
CD31 (1:100, BD), Cleaved Caspase 3 (1:500, Cell Signaling
Technology), αSMA (1:50, Abcam), mCherry (1:2000, Abcam), pERK
(1:100, Cell Signaling Technology), DCX (1:1000, Abcam), NG2
(1:100, Millipore), BrdU (1:500, Abcam).
For IF staining of cultured hNSCs, cells were fixed with 4% PFA

for 15min at RT. After three washes with PBS, cells were treated
with 0.5% Triton X-100 for 15 min at RT. After blocking with 5%
milk in PBS for 1 hour at RT, cells were incubated with anti-
hNESTIN (1:2000; Abcam), anti-Sox2 (1:1000; Abcam), anti-Pax6
(1:500; Abcam), anti-mCherry (1:2000; Abcam) overnight at 4 °C.
Primary antibodies were visualized by species-specific goat
secondary antibodies conjugated to Alexa Fluor dyes (Alexa 488/
555/647, 1:1000, Invitrogen), and the nuclei were stained with
DAPI (1 μg/mL). Stained cells were coverslipped and imaged under
a Zeiss (LSM880) confocal microscope.
IF images presented in the figures are representative of at least

three biological replicates in each group.

Colony formation assay
To determine the colony-formation capacity of Vector, TN, and TNP
hNSCs, 1500 cells for each group were seeded in the coated 6-well
plate, and cultured until apparent colony formation. For TNP+
V2TG and TNP+ C1QL1 hNSCs, only 1000 cells were used for each
group due to the high colony-formation capacity of TNP hNSCs.
Colonies were stained by crystal violet (Beyotime biotechnology),
and the total colony numbers were counted and compared.

qRT-PCR
Briefly, total RNA was purified from hNSCs using TRIzol reagent
(ThermoFisher Scientific). 2 μg RNA for each sample was reverse-
transcribed into cDNA by FastKing-RT SuperMix Kit (Tiangen),
prepared in iTaq™ Universal SYBR Green Supermix (BioRad), and

analyzed by BioRad CFX96 Touch Real-Time PCR Detection
System. The average threshold was determined for each gene
and normalized to β-Actin or GAPDH. Primers used for qRT-PCR
are listed below:
C1QL1-cDNA-F: 5’CATTCCCGGCACCTACTTT3’
C1QL1-cDNA-R: 5’GCCAGAGAACGTGCTGTATTT3’
GAPDH-cDNA-F: 5’GGAGCGAGATCCCTCCAAAAT3’
GAPDH-cDNA-R: 5’GGCTGTTGTCATACTTCTCATGG3’
ACTIN-beta-cDNA-F: 5’CATGTACGTTGCTATCCAGGC3’
ACTIN-beta-cDNA-R: 5’CTCCTTAATGTCACGCACGAT3’

Primary sphere culture
To culture NSC-like cells from primary tissues of TNP and TN
mice at various time points, tissues around the transplantation
sites with strong mCherry signals were carefully and maximally
excised from mouse brains under a fluorescent dissection
microscope (Olympus). Dissected tissues were cut into small
pieces, and incubated with 1 mg/mL collagenase type I (Gibco)
plus 0.5 mg/mL collagenase type IV (Gibco) at 37 °C for 15 min,
followed by mechanical dissociation through pipetting for 10
times. Dissociated cells were filtered through a 70 μm strainer, and
centrifuged at 300× g for 5 min. The resultant single cells were
washed with HBSS w/o Ca2+ and Mg2+ (Gibco) for two times, and
non-adherently cultured in stem cell culture medium (Neurobasal
Medium (Gibco) supplemented with GlutaMAX (Gibco) and
Sodium Pyruvate (Gibco), 1× B-27 supplement, 20 ng/mL EGF,
and 20 ng/mL bFGF) in 6-well ultra-low binding plates (Corning).
Cells were grown until they form spheres for subsequent analyses.
The images presented in the figures are representative of at least
two biological replicates in each group.

BrdU pulse-chase assay
TN and TNP mice at T1, T2 and T3 (around 3 months post
transplantation) stages were pulsed with 50 mg/kg (gram, body
weight) of BrdU five times daily at two-hour intervals. Mice pulsed
at T1 and T2 were sacrificed four weeks after the initial pulse. Mice
pulsed at T3 were aged until signs of distress appeared and
sacrificed. BrdU immunofluorescence was performed as previously
described on brain sections near the transplantation sites.14

Administration of c-Fos/AP-1 inhibitor T5224
T5224 was dissolved in 10% polyvinylpyrrolidone (vehicle, Sigma).
TNP mice at T1, T2, or T3 were randomly divided into two groups,
and treated with vehicle or T5224 (120 mg/kg body weight)
through oral administration for 10 days. To assess the effect of
acute treatment, TNP mice treated at T2 with vehicle or T5224 (4
each) were sacrificed one day after the 10-day treatment. For
survival curve comparison, mice were aged until signs of distress
appeared, sacrificed, and subjected to histological assessment of
glioma development.

Bulk WES sequencing and analysis
Library preparation and sequencing. Genomic DNA was extracted
from brain tissues by Blood & Tissue Genomic DNA Extraction Kit
(Tiangen). Sequencing libraries were generated using Agilent
SureSelect Human All Exon kit V6 (Agilent Technologies, CA, USA)
following the manufacturer’s recommendations. Briefly, fragmen-
tation was carried out by the hydrodynamic shearing system
(Covaris, Massachusetts, USA) to generate short fragments. The
sequencing libraries were constructed on a cBot Cluster Genera-
tion System using Hiseq PE Cluster Kit (Illumina) according to the
manufacturer’s instructions. Libraries were subjected to 150 bp
paired-end sequenced on the Illumina NovaSeq 6000. Each
sample was sequenced to 400× coverage with an average of
161 million (M) reads (SD= 21M).

Pre-alignment QC. Prior to alignment reads were initially subjected
to a quality control step using FastQC (v0.10.1).51 Reads containing
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adapter, poly-N, and with low quality were removed to obtain the
clean data, which were further filtered based on their Q20, Q30 and
GC content to meet the standard (Q20 > 90, Q30 > 85) by Trimmo-
matic.52 All the downstream analyses were based on these clean data.

BAM processing. To call human genomic variants from WES data,
all exome paired-end reads were aligned to the combined genome
of hg19/GRCh37 (https://grch37.ensembl.org/Homo_sapiens) and
mm10 (https://ensembl.org/Mus_musculus) using BWA (0.7.17-
r1188)53 and sorted by sambamba (v0.6.6).54 The reads uniquely
mapped to either the human or mouse genome were extracted
into human and mouse bam files, respectively. The human bam
files were then sorted, and only paired reads were kept. After
marking duplicates, the paired-only bam files were processed
using BaseRecalibrator and ApplyBQSR in GATK (v4.1.0).55 We then
calculated the coverage of target regions provided by Agilent
using CollectHsMetrics module in GATK. Only samples in which
over 80% of targeted bases with at least 30× coverage were
included for downstream analyses. All analysis procedures were
integrated by Snakemake (v5.5.2).56

Somatic variant calling. Single nucleotide variants (SNPs) and
insertions/deletions (Indels) were called using Mutect257 in GATK.
Somatic variants were called by comparing the corresponding tumor
sample to its vector samples at the same time point. Given the
CRISPR-induced mutations at the target sites occur randomly with
varying frequency, we applied the filter criterion (-max-events-in-
region 5 -max-alt-allele-count 2) to explore the clonal selection. For
other somatic variants, we used the default parameters to filter the
somatic variants. These variants were annotated by VEP (ensembl-
vep-release-97.3).58 The downstream analyses and visualization were
processed by R (3.6.0) package maftools (2.0.16).59

Copy number variation analysis. Significant focal somatic copy-
number alterations (SCNAs) were inferred by CNVkit60 using
Circular Binary Segmentation algorithm with default parameters.61

Segment-level ratios were calculated and log2 transformed. SCNAs
across all samples were identified by Genomic Identification of
Significant Targets in Cancer (GISTIC, version 2.0)62 to determine
which SCNA regions were significantly gained or lost than
expected by chance with q value ≤ 0.01.

Tumor mutational burden (TMB) analysis. To calculate the TMB,
the total number of mutations counted was divided by the size of
the target sequence region of the Agilent SureSelect Human All
Exon V6. The TMB profiles of thymoma (THYM), brain lower-grade
glioma (LGG), glioblastoma multiforme (GBM), and skin cutaneous
melanoma (SKCM) in TCGA were downloaded from https://gdc.
cancer.gov/about-data/publications/PanCan-CellOfOrigin.

Bulk RNA sequencing and analysis
Library preparation and sequencing. Total RNA was purified using
TRIzol reagent (Invitrogen). RNA purity was checked using the
NanoPhotometer® spectrophotometer (IMPLEN, CA, USA). RNA
concentration was measured using Qubit® 2.0 Fluorometer (Life
Technologies, CA, USA). RNA integrity was assessed using the RNA
Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent
Technologies, CA, USA). Sequencing libraries were generated
using NEB Next® UltraTM RNA Library Prep Kit for Illumina® (NEB,
USA) following the manufacturer’s recommendations. The library
fragments were purified with AMPure XP system (Beckman
Counlter, Beverly, USA). The libraries were sequenced on the
Illumina HiSeq 2500 platform and 150 bp paired-end reads were
generated (Anoroad, Co, Ltd, Beijing, China). Each sample was
sequenced to an average depth of 65 M reads (SD= 7 M).

QC and Alignment. Fastq files were initially subjected to a quality
control step using FastQC (v0.10.1),51 and the reads were then

trimmed using Trimmomatic. To accurately quantify human gene
expression, we applied a two-step alignment. The filtered reads were
first mapped to a combined reference genome from human (hg19)
and mouse (mm10) using STAR (v2.7.1a).63 The reads that uniquely
aligned to the human genome were extracted and converted into
fastq format by sambamba. We then aligned the cleaned human
reads to the hg19 genome for downstream analyses.

Differential expression and gene pattern analysis. For differential
gene expression analysis, we used DESeq2 (v1.24.0)64 to perform
normalization and differential expression test on the raw read
counts for each gene annotated in GRCh37 (release 87 ftp.
ensembl.org/pub/grch37/release-87/gtf/homo_sapiens/Homo_sa-
piens.GRCh37.87.gtf.gz). Differential expression genes (DEGs) were
defined using DESeq2 with the adjusted P value < 0.05 and
absolute log2(fold-change) > 1.2. The KEGG and GO enrichment
analysis was performed by clusterProfiler.65 The TPM (transcripts
per million reads) for genes and transcripts were calculated by
RSEM (v1.3.1).66

Principal components analysis (PCA). The pseudo-bulk samples
were generated by aggregating single-cell counts per gene from
each sample. Then we merged and normalized all bulk RNA-seq and
pseudo-bulk by library size. To eliminate the technical effect, we
used the ComBat in SVA67 to minimize the effect between bulk and
pseudo-bulk datasets. The corrected values were subjected to PCA.

Molecular classifications based on ssGSEA enrichment scores and
tumor subtype classification. The subtype classification was based
on ssGSEA enrichment scores for bulk and single-cell pseudo-bulk
TNP samples at the different stages, using a published protocol.4

Briefly, we generated a large number (≥ 100, 000) of random ssGSEA
scores for each subtype among the log-transformed expression to
build the null distribution and to calculate the empirical P values. The
subtype with the highest –log10 P value was considered the sample
subtype. The TCGA tumor subtype classification was calculated by
GEPIA2 (http://gepia2.cancer-pku.cn).29

GBM-normal expression comparison analyses. The TPM of the
given genes from TCGA GBM and matched GETx normal tissue RNA-
seq datasets were visualized by GEPIA2 (http://gepia2.cancer-pku.cn).

Primary sphere lineage analysis. Bulk expression profiles of
normal lineage cells including astrocytes, neurons, and oligoden-
drocytes were downloaded from GSE9566.68 The Pearson correla-
tion coefficients were calculated between normal lineage cells and
TN primary spheres.

Deconvolution of TN bulk RNA-seq. We used MuSiC69 to
deconvolute the transcriptome of TN Bulk RNA-Seq samples into
the likely constituent cell types, using TNP scRNA-seq datasets as a
reference. We calculated the predicted proportions of each cell
type in TN bulk samples, and visualized these proportions with
ComplexHeatmap (v2.0.0).70

ScRNA-seq and analysis
Library preparation and sequencing. Single cells were prepared in
the Chromium Single Cell Gene Expression Solution using the
Chromium Single Cell 3′ Gel Bead, Chip and Library Kits v2 (10×
Genomics) as per the manufacturer’s protocol. 8000–10,000 total
cells were added to each channel with an average recovery of
5758 cells. The cells were then partitioned into Gel Beads in
Emulsion in the Chromium instrument, where cell lysis and
barcoded reverse transcription of RNA occurred, followed by
amplification, shearing 5′ adapter, and sample index attachment.
Libraries were sequenced on the Illumina NovaSeq 6000 platform
at Novogene, Beijing, China. On average each sample generated
about 709 M reads (SD= 121M).
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Alignment and quantification. The sequencing data were pro-
cessed using CellRanger software (version 3.0.0) with default
parameters, mapping to the human (hg19), mouse (mm10)
genomes, and exogenous genes (e.g., PuroR) introduced by the
viral plasmid. Human cells were sorted out based on their
alignment to the human genome. Gene expression was quantified
based on the unique molecular identifier (UMI) (PuroR > 0). We
removed outlier cells by isOuterlier from Scater package
(v1.12.2)71 or low-quality cells (gene count < 500 or the
mitochondria gene ratio >25%).

Clustering and annotation. We used Seurat (v3.1.0) for down-
stream analyses including data normalization (NormalizeData,
LogNormalize method, scaling factor 10,000), data feature scaling
(ScaleData), variable gene detection (FindVariableGenes with vst
method) and PCA of variable genes (RunPCA). The statistically
significant PCs were used for Harmony to remove the batch effect,
and the two-dimension UMAP was calculated among the
Harmony matrix.30 Then the original Louvain algorithm (FindClus-
ters) with clustering resolution 0.7 was performed to cluster the
cells. We computed DEGs using the FindAllMarkers function in the
Seurat package with default parameters.

Lineage trajectory analysis. We used a cell lineage inference tool,
URD (v1.0.2),35 to predict tumor lineage trajectory. We first
detected highly variable genes among each stage respectively.
To determine the transition probabilities, we calculated the
diffusion map with the specific parameter (knn= 200, sigma.use
= ’local’)72 and defined T0 cells in the NSC1 or NSC2 clusters as
the root cells to infer the pseudotime. The URD used a novel
diffusion approach that simulates random walks from each tip to
the root, and measures the frequency of cells visited by walks
from each tip, and the best route was then determined. The tip
cells were defined by neurons, astrocytes, and oligodendrocytes
at different stages. We computed the lineage-specific genes
using the aucprTestAlongTree function in URD with default
parameters.

Pseudotime in sub-clusters. We first detected highly variable
genes for each cluster to calculate the diffusion map with the
default parameters, then inferred the pseudotime by defining the
cells at T0 as the root cells. The differential expression tests along
the pseudotime were performed by differentialGeneTest in
monocle (v2.12.0),73 and the significantly altered genes (p-adj <
0.01) were selected for downstream analyses. To find genes
specifically upregulated at each stage, we calculated the mean
values of each gene at different stages, and then classified each
gene to a stage by its maximum expression, we further required
stage-specific genes with a 1.2-fold-change over other stages.

Stemness signature and meta-module score calculation. The genes
in the list of stemness signature were obtained from previous
publications.5,8,41 To calculate the stemness score, we aggregated
the average normalized expression of all genes in every module
and used this value as the module signatures. The scaled scores
were visualized by ComplexHeatmap (v2.0.0).

Correlation to NSC-like cells in human GBM datasets. We first
isolated the NSC-like cell population from pediatric and adult GBM
datasets, and then calculated the Pearson correlation coefficients
between NSC-like cells in human GBM and our TNP samples based
on stage-specific genes of NSC1 population. The mean values of the
correlation coefficients were visualized by ComplexHeatmap (v2.0.0).

Stage-specific transcriptional regulatory network in NSC1 population.
The stage-specific TFs of the NSC1 population were used to build
the gene regulatory network based on the Encode TF-gene
interaction database from NetworkAnalyst website.74 The JSON

format network files were imported to Cytoscape (v3.5.1)75 for
downstream network analyses. The nodes were sized according to
the degree of connectivity and the network was visualized with an
organic layout.

Human GBM scRNA-seq dataset. We analyzed the scRNA-seq
expression profiles of pediatric and adult human GBMs with GEO
or Bioproject accession number GSM3828672,5 GSE138794,7 and
PRJNA579593.6 For each datasets, we excluded all cells according
to the original filter criterion. The annotations of GSM3828672 and
PRJNA579593 were downloaded from Broad Single Cell Portal
(https://singlecell.broadinstitute.org/single_cell), and UCSC Cell
Browser (http://gbm.cells.ucsc.edu), respectively. The malignant
cells (GSM3828672 and PRJNA579593) and all cells (GSE138794)
were isolated for downstream analyses, including variable gene
detection (FindVariableGenes with vst method), PCA among
variable genes (RunPCA) and UMAP among PCA matrix (RunU-
MAP) in Seurat (v.3.1.0).76

Human hippocampal development scRNA-seq dataset. We ana-
lyzed the scRNA-seq expression profiles of the human hippocam-
pus from the GEO with the accession number GSE131258.38

Following the original filtering criteria, we kept cells that
expressed more than 800 genes and fewer than 7000 genes,
and only analyzed genes expressed in at least 30 single cells (0.1%
of the total cells) for downstream analyses. The markers HOPX/
PAX6, ASCL1, NEUROD2, GAD1, OLIG2, MBP, AQP4, SPARC, and
PTPRC were used to mark hippocampal hNSCs, progenitor cells,
excitatory neurons, inhibitory neurons, OPCs, oligodendrocytes,
astrocytes, endothelial cells, and microglia, respectively. After
assigning subpopulation identity, we isolated HOPX+ hNSC
clusters, calculated the diffusion map using highly variable genes
with default parameters, and inferred the pseudotime by defining
hNSCs from GW16 as root cells.

Quantification and statistical analyses
Anatomically comparable sections from control and mutant brains
(at least 3 animals for each group) were visualized under ×20 or
×40 magnification using an Olympus BX51 microscope. For each
section, at least three images were captured and subjected to
quantification using the ImageJ software. Cell numbers and
proportions were analyzed by unpaired Student’s t-test. For
survival analyses, Log-rank test was used to determine the
differences between Kaplan–Meier survival curves. P < 0.05 is
considered statistically significant. All statistical analyses were
performed using R (3.6.0) or GraphPad Prism 5 software.

DATA AND CODE AVAILABILITY
All the raw data of WES and bulk RNA-seq have been deposited in the NCBI
BioProject under accession number: PRJNA597654. All raw counts, TPM matrix, the
Seurat, and URD object including expression matrix and cell annotation information
of single-cell RNA-seq are available in Figshare (https://doi.org/10.6084/m9.
figshare.11610870).

ACKNOWLEDGEMENTS
We thank Dr. Danwei Huangfu at Sloan-Kettering Institute and Dr. Jie Na at Tsinghua
University for providing the iCas9 hPSC cell line, Drs. Da Jia, Junhong Han, Bisen Ding,
and Zhihong Xue for critically reading the manuscript, and Bin Chen for technical
support. Y.W. is supported by the National Key Research and Development Program
of China, Stem Cell and Translational Research (2017YFA0106500), the Distinguished
Young Scientists Program of Sichuan Province (2019JDJQ0029), and the 135 Program
for Excellent Scholars at West China Hospital (ZYYC20019). L.C. is supported by the
National Key Research and Development Program of China, Stem Cell and
Translational Research (2017YFA0106800 and 2017YFA0106500), and the National
Science Fund for Excellent Young Scholars (81722004). Y.Z. is supported by the
National Key Research and Development Program of China, Stem Cell and
Translational Research (2017YFA0106800).

Article

700

Cell Research (2021) 31:684 – 702

https://singlecell.broadinstitute.org/single_cell
http://gbm.cells.ucsc.edu
https://doi.org/10.6084/m9.figshare.11610870
https://doi.org/10.6084/m9.figshare.11610870


AUTHOR CONTRIBUTIONS
Y.W. conceived the study. Y.W., L.C., and Y.Z. designed and supervised the experiments,
analyzed the data, and wrote the manuscript. X.W., assisted by Y.X., L.Z., F.L., C.X.,
performed most of the experiments, analyzed the data, and helped with manuscript
preparation. R.Z., assisted by YM.Z. and Z.H., performed most of the computational
analyses, analyzed the data, and helped with manuscript preparation. X.Y. and C.D.
performed scRNA-seq. M.W. and K.S. provided technical help. W.L., Y.L., Z.C, Z.Z., S.Z., and
C.C. provided key experimental resources and critically revised the manuscript.

ADDITIONAL INFORMATION
Supplementary information accompanies this paper at https://doi.org/10.1038/
s41422-020-00451-z.

Competing interests: The authors declare no competing interests.

REFERENCES
1. Louis, D. N. et al. The 2016 World Health Organization Classification of Tumors of

the Central Nervous System: a summary. Acta Neuropathologica 131, 803–820
(2016).

2. Sturm, D. et al. Paediatric and adult glioblastoma: multiform (epi)genomic culprits
emerge. Nat. Rev. Cancer 14, 92–107 (2014).

3. Verhaak, R. G. et al. Integrated genomic analysis identifies clinically relevant
subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR,
and NF1. Cancer Cell 17, 98–110 (2010).

4. Wang, Q. et al. Tumor evolution of glioma-intrinsic gene expression subtypes
associates with immunological changes in the microenvironment. Cancer Cell 32,
42–56 (2017).

5. Neftel, C. et al. An integrative model of cellular states, plasticity, and genetics for
glioblastoma. Cell 178, 835–849 (2019).

6. Bhaduri, A. et al. Outer radial glia-like cancer stem cells contribute to hetero-
geneity of glioblastoma. Cell Stem Cell 26, 48–63 (2020).

7. Wang, L. et al. The phenotypes of proliferating glioblastoma cells reside on a
single axis of variation. Cancer Discov. 9, 1708–1719 (2019).

8. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in
primary glioblastoma. Science 344, 1396–1401 (2014).

9. Korber, V. et al. Evolutionary trajectories of IDH(WT) glioblastomas reveal a
common path of early tumorigenesis instigated years ahead of initial diagnosis.
Cancer Cell 35, 692–704 (2019).

10. Zhu, Y. et al. Early inactivation of p53 tumor suppressor gene cooperating with
NF1 loss induces malignant astrocytoma. Cancer Cell 8, 119–130 (2005).

11. Alcantara Llaguno, S. et al. Malignant astrocytomas originate from neural stem/
progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15,
45–56 (2009).

12. Llaguno S. A., et al. Cell-of-origin susceptibility to glioblastoma formation declines
with neural lineage restriction. Nat. Neurosci. 22, 545–555 (2019).

13. Liu, C. et al. Mosaic analysis with double markers reveals tumor cell of origin in
glioma. Cell 146, 209–221 (2011).

14. Wang, Y. et al. Expression of mutant p53 proteins implicates a lineage relation-
ship between neural stem cells and malignant astrocytic glioma in a murine
model. Cancer Cell 15, 514–526 (2009).

15. Lee, J. H. et al. Human glioblastoma arises from subventricular zone cells with
low-level driver mutations. Nature 560, 243–247 (2018).

16. Hockemeyer, D. & Jaenisch, R. Induced pluripotent stem cells meet genome
editing. Cell Stem Cell 18, 573–586 (2016).

17. Koga, T. et al. Longitudinal assessment of tumor development using cancer
avatars derived from genetically engineered pluripotent stem cells. Nat. Com-
mun. 11, 550 (2020).

18. Duan, S. et al. PTEN deficiency reprogrammes human neural stem cells towards a
glioblastoma stem cell-like phenotype. Nat. Commun. 6, 10068 (2015).

19. Gonzalez, F. et al. An iCRISPR platform for rapid, multiplexable, and inducible
genome editing in human pluripotent stem cells. Cell Stem Cell 15, 215–226
(2014).

20. Cancer Genome Atlas Research N. Comprehensive genomic characterization
defines human glioblastoma genes and core pathways. Nature 455, 1061–1068
(2008).

21. Ligon, K. L. et al. Olig2-regulated lineage-restricted pathway controls replication
competence in neural stem cells and malignant glioma. Neuron 53, 503–517
(2007).

22. Lu, Q. R. et al. Sonic hedgehog-regulated oligodendrocyte lineage genes
encoding bHLH proteins in the mammalian central nervous system. Neuron 25,
317–329 (2000).

23. Zhou, Q., Wang, S. & Anderson, D. J. Identification of a novel family of oligo-
dendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron
25, 331–343 (2000).

24. de Gooijer, M. C., Guillen Navarro, M., Bernards, R., Wurdinger, T. & van Tellingen,
O. An Experimenter’s guide to glioblastoma invasion pathways. Trends Mol. Med.
24, 763–780 (2018).

25. Lim, D. A. et al. Relationship of glioblastoma multiforme to neural stem cell
regions predicts invasive and multifocal tumor phenotype. Neuro Oncol. 9,
424–429 (2007).

26. Adeberg, S. et al. Glioblastoma recurrence patterns after radiation therapy with
regard to the subventricular zone. Int. J Radiat Oncol. Biol. Phys. 90, 886–893
(2014).

27. Ricci-Vitiani, L. et al. Tumour vascularization via endothelial differentiation of
glioblastoma stem-like cells. Nature 468, 824–828 (2010).

28. Cheng, L. et al. Glioblastoma stem cells generate vascular pericytes to support
vessel function and tumor growth. Cell 153, 139–152 (2013).

29. Tang, Z., Kang, B., Li, C., Chen, T. & Zhang, Z. GEPIA2: an enhanced web server for
large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47,
W556–W560 (2019).

30. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with
Harmony. Nat. Methods 16, 1289–1296 (2019).

31. McInnes L., Healy, J., and Melville, J. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv:1802.03426 (2018).

32. Zhong, S. et al. A single-cell RNA-seq survey of the developmental landscape of
the human prefrontal cortex. Nature 555, 524–528 (2018).

33. Dulken, B. W., Leeman, D. S., Boutet, S. C., Hebestreit, K. & Brunet, A. Single-cell
transcriptomic analysis defines heterogeneity and transcriptional dynamics in the
adult neural stem cell lineage. Cell Rep. 18, 777–790 (2017).

34. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nat.
Biotechnol. 36, 411–420 (2018).

35. Farrell J. A., et al Single-cell reconstruction of developmental trajectories during
zebrafish embryogenesis. Science 360, eaar3131 (2018).

36. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155,
462–477 (2013).

37. Sigoillot, S. M. et al. The secreted protein C1QL1 and its receptor BAI3 control the
synaptic connectivity of excitatory inputs converging on cerebellar Purkinje cells.
Cell Rep. 10, 820–832 (2015).

38. Zhong, S. et al. Decoding the development of the human hippocampus. Nature
577, 531–536 (2020).

39. Imayoshi, I., Sakamoto, M., Yamaguchi, M., Mori, K. & Kageyama, R. Essential roles
of Notch signaling in maintenance of neural stem cells in developing and adult
brains. J Neurosci. 30, 3489–3498 (2010).

40. Suva, M. L. et al. Reconstructing and reprogramming the tumor-propagating
potential of glioblastoma stem-like cells. Cell 157, 580–594 (2014).

41. Venteicher A. S., et al. Decoupling genetics, lineages, and microenvironment in
IDH-mutant gliomas by single-cell RNA-seq. Science 355, eaai8478 (2017).

42. Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human
oligodendroglioma. Nature 539, 309–313 (2016).

43. Laug, D., Glasgow, S. M. & Deneen, B. A glial blueprint for gliomagenesis. Nat. Rev.
Neurosci. 19, 393–403 (2018).

44. Ye, N., Ding, Y., Wild, C., Shen, Q. & Zhou, J. Small molecule inhibitors targeting
activator protein 1 (AP-1). J Med. Chem. 57, 6930–6948 (2014).

45. Zhu, Z. et al. Targeting self-renewal in high-grade brain tumors leads to loss
of brain tumor stem cells and prolonged survival. Cell Stem Cell 15, 185–198
(2014).

46. Pollard, S. M. et al. Glioma stem cell lines expanded in adherent culture have
tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell
Stem Cell 4, 568–580 (2009).

47. Venkataramani, V. et al. Glutamatergic synaptic input to glioma cells drives brain
tumour progression. Nature 573, 532–538 (2019).

48. Venkatesh, H. S. et al. Electrical and synaptic integration of glioma into neural
circuits. Nature 573, 539–545 (2019).

49. Reinhardt, P. et al. Derivation and expansion using only small molecules of
human neural progenitors for neurodegenerative disease modeling. PloS One 8,
e59252 (2013).

50. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat.
Biotechnol. 31, 827–832 (2013).

51. Andrews S., others. FastQC: a quality control tool for high throughput sequence
data. Babraham Bioinformatics, Babraham Institute, Cambridge, UK 2010.

52. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics 30, 2114–2120 (2014).

53. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25, 1754–1760 (2009).

Article

701

Cell Research (2021) 31:684 – 702

https://doi.org/10.1038/s41422-020-00451-z
https://doi.org/10.1038/s41422-020-00451-z


54. Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast
processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).

55. McKenna, A. et al. The genome analysis Toolkit: a MapReduce framework for ana-
lyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

56. Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine.
Bioinformatics 28, 2520–2522 (2012).

57. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and
heterogeneous cancer samples. Nat. Biotechnol. 31, 213 (2013).

58. McLaren, W. et al. The ensembl variant effect predictor. Genome Biology 17, 122
(2016).

59. Mayakonda, A., Lin, D.-C., Assenov, Y., Plass, C. & Koeffler, H. P. Maftools: efficient
and comprehensive analysis of somatic variants in cancer. Genome Res. 28,
1747–1756 (2018).

60. Talevich, E., Shain, A. H., Botton, T. & Bastian, B. C. CNVkit: genome-wide copy
number detection and visualization from targeted DNA sequencing. PLoS Com-
put. Biol. 12, e1004873 (2016).

61. Seshan V. E., Olshen A. DNAcopy: DNA copy number data analysis. R package
version 2016; 1.

62. Mermel, C. H. et al. GISTIC2. 0 facilitates sensitive and confident localization of the
targets of focal somatic copy-number alteration in human cancers. Genome Biol.
12, R41 (2011).

63. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21
(2013).

64. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

65. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing
biological themes among gene clusters. Omics: A J. Integrative Biol. 16, 284–287
(2012).

66. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data
with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

67. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package
for removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics 28, 882–883 (2012).

68. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligo-
dendrocytes: a new resource for understanding brain development and function.
J Neurosci. 28, 264–278 (2008).

69. Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type decon-
volution with multi-subject single-cell expression reference. Nat Commun. 10,
380 (2019).

70. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations
in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

71. McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing,
quality control, normalization and visualization of single-cell RNA-seq data in R.
Bioinformatics 33, 1179–1186. (2017).

72. Haghverdi, L., Buettner, F. & Theis, F. J. Diffusion maps for high-
dimensional single-cell analysis of differentiation data. Bioinformatics 31,
2989–2998 (2015).

73. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories.
Nat. Methods 14, 979 (2017).

74. Zhou, G. et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive
gene expression profiling and meta-analysis. Nucleic Acids Res. 47, W234–W241
(2019).

75. Shannon, P. et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

76. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902
(2019).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

Article

702

Cell Research (2021) 31:684 – 702

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Sequential fate-switches in stem-like cells drive the tumorigenic trajectory from human neural stem cells to malignant glioma
	Introduction
	Results
	Genome-edited hNSCs with GBM-relevant tumor suppressor mutations generate malignant gliomas with high penetrance
	TN and TNP tumors resemble inter- and intra-tumor heterogeneity of GBM
	A stage of “oncogenic burst” distinguishes de novo tumorigenesis from normal differentiation
	A persistent stem-like cell population at all stages of tumorigenesis
	De novo gliomagenesis is driven by sequential fate-switches of the NSC-like cells
	Additional genetic alterations play a limited role in the sequential fate-switches of NSC-like cells
	The tumorigenic trajectory of NSC-like cells reveals stage-specific regulatory programs and resembles human GBM development
	The gliomagenic trajectory highlights stage-specific TF networks and provides a blueprint for early-stage interventions

	Discussion
	Materials and methods
	Cell lines and cell culture
	Animals
	Orthotopic xenograft mouse models
	Vectors and gRNAs
	Lentiviral packaging and viral transfection of hNSCs
	T7EI analysis for assessment of genome-editing efficiency
	Tissue preparation for histology and sequencing
	Western blot analysis
	Immunofluorescence (IF)
	Colony formation assay
	qRT-PCR
	Primary sphere culture
	BrdU pulse-chase assay
	Administration of c-Fos/AP-1 inhibitor T5224
	Bulk WES sequencing and analysis
	Library preparation and sequencing
	Pre-alignment QC
	BAM processing
	Somatic variant calling
	Copy number variation analysis
	Tumor mutational burden (TMB) analysis

	Bulk RNA sequencing and analysis
	Library preparation and sequencing
	QC and Alignment
	Differential expression and gene pattern analysis
	Principal components analysis (PCA)
	Molecular classifications based on ssGSEA enrichment scores and tumor subtype classification
	GBM-normal expression comparison analyses
	Primary sphere lineage analysis
	Deconvolution of TN bulk RNA-seq

	ScRNA-seq and analysis
	Library preparation and sequencing
	Alignment and quantification
	Clustering and annotation
	Lineage trajectory analysis
	Pseudotime in sub-clusters
	Stemness signature and meta-module score calculation
	Correlation to NSC-like cells in human GBM datasets
	Stage-specific transcriptional regulatory network in NSC1 population
	Human GBM scRNA-seq dataset
	Human hippocampal development scRNA-seq dataset

	Quantification and statistical analyses

	Supplementary information
	Acknowledgements
	Author contributions
	ADDITIONAL INFORMATION
	References




